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Hamilton’s Principle- Lagrangian and

Hamiltonian Dynamics
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Joseph-Louis Lagrange



Experience has shown that a particle’s motion in an internal reference frame is

correctly described by the Newtonian equation (see Chapter2) F =p

This is a complicated system!
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The Euler-Lagrange equations is given by
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2. Simple Harmonic Oscillator
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Example 7.1: Use the Lagrange equation to obtain the equation of

motion for one-dimensional harmonic oscillator.

Answer:

With the usual expressions for the kinetic and potential energies, we have
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This is identical with the equation of motion obtained using Newtonian

mechanics (See Chapter 3).
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Example 7.2: Use the Lagrange equation to obtain the equation of motion

of Simple pendulum.

Amnsuwer:

The kinetic and potential energies of the system are given by:
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This is a remarkable result!

It has been obtained by calculating the kinetic and potential energies in terms of

0 rather than x and then applying a set of operations designed for use with

rectangular rather than angular coordinates.

Another important characteristic of the method used in two preceding simple

examples is that nowhere in the calculation did there enter any statement regarding

force.




Example 7.3. Use the (x,y) coordinate system to find the kinetic energy T,

potential energy U, and the Lagrangian L for a simple pendulum ( length [, mass

bob m) moving in x,y plane .Determine the transformation equations from the

(x,y) rectangular system to the coordinate 6. Find the equation of motion.

Answer:

The kinetic and potential energies and the Lagrangian become
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Inspection reveals that the motion can be better described by using 6 and 6. Let’s

transform x and y into the coordinate 6 and then find L in terms of 6.

x = 1sin@ y = —lcos@

We now find for x and y

x = 10cosf y = 16sinf
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7.4 Lagrange’s Equations of motion in Generalized coordinates.
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It is important to realize that the validity of Lagrange’s equation requires the

following two conditions:

1. The force acting on the system (apart from any forces of constraint) must be
derivable from the potential
2. The equations of constraint must be relations that connect the coordinates of the

particles and may be functions of the time.



Example 7.4: Consider the case of projectile motion under gravity in two
dimensions (as was discussed in Chapter 2). Find the equations of motion in both

Cartesian and polar coordinates.




In Cartesian coordinate, we use xx (horizantoal) and y y ( vertical ).
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In polar coordinate, we use r (in radial direction) and 8 (elevation angle from horizontal)
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Canonical Equations of Motion-Hamiltonian

In the previous section, we found that if the potential energy of a system is velocity
independent, then the linear momentum componentsin rectangular coordinates are given by

Pizﬂ

By analogy, we extend this result to the case in which the Lagrangian is expressed in
generalized coordinates and define the generalized momenta* according to
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Using the definition of the generalized momenta for the Hamiltonian may be written
as

q]:x = P

= iy~ |
pj = p = linear momentum




7\

H =

ij Jéj — L

2T

sine pv = | | (mv) v = mv? ‘Il:> 2 (%mvz) ":>

H=2T —-T+U

>

H=T+U L=T-U

4

Hamiltonian Lagrangian




Example 7.5: Find the equations of motion for a system of particle moving in a

potential region where U = cx using Hamiltonian method.
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mx+c=0

OR

Equation of motion



Example 7.6: Find the equations of motion for a system of simple Oscillator using

the Hamiltonian method.
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Example 7.7: Find the equations of motion for a system of free fall particle using

the Hamiltonian method.
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In general coordinate

Now for a system expressed in the generalized coordinatesq; and g;

q is a general coordinate (x,vy,2,0,, ...)

Canonical Equations

= x —=-p X-direction




Example 7.8: Obtain Hamilton’s equations of motion for one-dimensional harmonic

oscillator and use them to find the ditferential equation.
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Lagrangian VS Hamiltonian
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